Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Birth ; 2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-2316997

ABSTRACT

INTRODUCTION: Pregnant women are vulnerable to severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. Neutralizing antibodies against the SARS-CoV-2 spike (S) protein protect from severe disease. This study analyzes the antibody titers to SARS-CoV-2 S protein in pregnant women and their newborns at delivery, and six months later. METHODS: We conducted a prospective study on pregnant women with confirmed SARS-CoV-2 infection and newborns. Antibody (IgG, IgM, and IgA) titers were determined using immunoassays in serum and milk samples. An angiotensin-converting enzyme 2 (ACE2) receptor-binding inhibition assay to the S protein was performed on the same serum and milk samples. RESULTS: At birth, antibodies to SARS-CoV-2 spike protein were detected in 81.9% of mothers' sera, 78.9% of cord blood samples, and 63.2% of milk samples. Symptomatic women had higher antibody titers (IgG, IgM, and IgA) than the asymptomatic ones (P < 0.05). At six months postpartum, IgG levels decreased drastically in children's serum (P < 0.001) but remained high in mothers' serum. Antibody titers correlated positively with its capacity to inhibit the ACE2-spike protein interaction at baseline in maternal sera (R2  = 0.203; P < 0.001), cord sera (R2  = 0.378; P < 0.001), and milk (R2  = 0.564; P < 0.001), and at six months in maternal sera (R2  = 0.600; P < 0.001). CONCLUSIONS: High antibody levels against SARS-CoV-2 spike protein were found in most pregnant women. Due to the efficient transfer of IgG to cord blood and high IgA titers in breast milk, neonates may be passively immunized to SARS-CoV-2 infection. Our findings could guide newborn management and maternal vaccination policies.

4.
Front Immunol ; 13: 878812, 2022.
Article in English | MEDLINE | ID: covidwho-1933661

ABSTRACT

Introduction: There is robust evidence indicating that the SARS-CoV-2-specific humoral response is associated with protection against severe disease. However, relatively little data exist regarding how the humoral immune response at the time of hospital admission correlates with disease severity in unimmunized patients. Our goal was toidentify variables of the humoral response that could potentially serve as prognostic markers for COVID-19 progressionin unvaccinated SARS-CoV-2 patients. Methods: A prospective cross-sectional study was carried out in a cohort of 160 unimmunized, adult COVID-19 patients from the Hospital Universitario 12Octubre. Participants were classified into four clinical groups based on disease severity: non-survivors with respiratory failure (RF), RF survivors, patients requiring oxygen therapy and those not receiving oxygen therapy. Serum samples were taken on admission and IgM, IgG, IgG subclass antibody titers were determined by ELISA, and neutralizing antibody titersusing a surrogate neutralization assay. The differences in the antibody titers between groups and the association between the clinical and analytical characteristics of the patients and the antibody titers were analyzed. Results: Patients that developed RF and survived had IgM titers that were 2-fold higher than non-survivors (p = 0.001), higher levels of total IgG than those who developed RF and succumbed to infection (p< 0.001), and than patients who required oxygen therapy (p< 0.05), and had 5-fold higher IgG1 titers than RF non-survivors (p< 0.001) and those who needed oxygen therapy (p< 0.001), and 2-fold higher than patients that did not require oxygen therapy during admission (p< 0.05). In contrast, RF non-survivorshad the lowest neutralizing antibodylevels, which were significantly lower compared those with RF that survived (p = 0.03). A positive correlation was found between IgM, total IgG, IgG1 and IgG3 titers and neutralizing antibody titers in the total cohort (p ≤ 0.0036). Conclusions: We demonstrate that patients with RF that survived infection had significantly higher IgM, IgG, IgG1 and neutralizing titers compared to patients with RF that succumb to infection, suggesting that using humoral response variables could be used as a prognostic marker for guiding the clinical management of unimmunized patients admitted to the hospital for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Antibodies, Neutralizing , Antibodies, Viral , Cross-Sectional Studies , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , Oxygen , Prospective Studies , Research Report , SARS-CoV-2
5.
Angew Chem Int Ed Engl ; 61(28): e202203662, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1819337

ABSTRACT

The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/H2 O2 system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunity , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Front Microbiol ; 13: 826883, 2022.
Article in English | MEDLINE | ID: covidwho-1753389

ABSTRACT

We documented a hematologic patient with prolonged SARS-CoV-2 viral replication in whom emergence of viral mutations was documented after the consecutive use of antivirals and convalescent plasma. The virus detected in the last of 12 clinical samples (day 237) had accumulated 22 changes in amino acids and 29 in nucleotides. Some of these changes, such as the E484Q, were mutations of concern as defined by WHO. This finding represents an enormous epidemiological threat and poses a major clinical challenge. Combined antiviral strategies, as well as specific strategies related to the diagnostic approach of prolonged infections for this specific population, may be needed.

7.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742485

ABSTRACT

The B and T lymphocytes of the adaptive immune system are important for the control of most viral infections, including COVID-19. Identification of epitopes recognized by these cells is fundamental for understanding how the immune system detects and removes pathogens, and for antiviral vaccine design. Intriguingly, several cross-reactive T lymphocyte epitopes from SARS-CoV-2 with other betacoronaviruses responsible for the common cold have been identified. In addition, antibodies that cross-recognize the spike protein, but not the nucleoprotein (N protein), from different betacoronavirus have also been reported. Using a consensus of eight bioinformatic methods for predicting B-cell epitopes and the collection of experimentally detected epitopes for SARS-CoV and SARS-CoV-2, we identified four surface-exposed, conserved, and hypothetical antigenic regions that are exclusive of the N protein. These regions were analyzed using ELISA assays with two cohorts: SARS-CoV-2 infected patients and pre-COVID-19 samples. Here we describe four epitopes from SARS-CoV-2 N protein that are recognized by the humoral response from multiple individuals infected with COVID-19, and are conserved in other human coronaviruses. Three of these linear surface-exposed sequences and their peptide homologs in SARS-CoV-2 and HCoV-OC43 were also recognized by antibodies from pre-COVID-19 serum samples, indicating cross-reactivity of antibodies against coronavirus N proteins. Different conserved human coronaviruses (HCoVs) cross-reactive B epitopes against SARS-CoV-2 N protein are detected in a significant fraction of individuals not exposed to this pandemic virus. These results have potential clinical implications.


Subject(s)
Coronavirus Nucleocapsid Proteins/immunology , Coronavirus OC43, Human/immunology , Cross Reactions/immunology , Epitope Mapping/methods , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Adult , Amino Acid Sequence , COVID-19/immunology , COVID-19/virology , Cohort Studies , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/physiology , Cross Reactions/genetics , Enzyme-Linked Immunosorbent Assay/methods , Epitopes, B-Lymphocyte/metabolism , HEK293 Cells , Health Personnel/statistics & numerical data , Humans , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
9.
Transplant Direct ; 7(12): e794, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1528247

ABSTRACT

Severe acute respiratory syndrome coronavirus 2-specific cell-mediated immunity (SARS-CoV-2-CMI) elicited by mRNA-based vaccines in solid organ transplant (SOT) recipients and its correlation with antibody responses remain poorly characterized. METHODS: We included 44 (28 kidney, 14 liver, and 2 double organ) recipients who received the full series of the mRNA-1273 vaccine. SARS-CoV-2-CMI was evaluated at baseline, before the second dose, and at 2 wk after completion of vaccination by an ELISpot-based interferon-γ FluoroSpot assay using overlapping peptides covering the S1 domain. SARS-CoV-2 immunoglobulin G seroconversion and serum neutralizing activity against the spike protein were assessed at the same points by commercial ELISA and an angiotensin-converting enzyme-2/spike antibody inhibition method, respectively. Postvaccination SARS-CoV-2-CMI was compared with 28 healthcare workers who received the BNT162b2 vaccine. RESULTS: Positive SARS-CoV-2-CMI increased from 6.8% at baseline to 23.3% after the first mRNA-1273 dose and 59.5% after the completion of vaccination (P < 0.0001). Lower rates were observed for immunoglobulin G seroconversion (2.3%, 18.6%, and 57.1%, respectively) and neutralizing activity (2.3%, 11.6%, and 31.0%). There was a modest correlation between neutralizing titers and the magnitude of SARS-CoV-2-CMI (Spearman's rho: 0.375; P = 0.015). Fifteen recipients (35.7%) mounted SARS-CoV-2-CMI without detectable neutralizing activity, whereas 3 (7.1%) did the opposite, yielding poor categorical agreement (Kappa statistic: 0.201). Rates of positive SARS-CoV-2-CMI among SOT recipients were significantly decreased compared with nontransplant controls (82.1% and 100.0% after the first dose and completion of vaccination, respectively; P < 0.0001). Kidney transplantation, the use of tacrolimus and prednisone, and the number of immunosuppressive agents were associated with lower cell-mediated responses. Results remained unchanged when 3 recipients with prevaccination SARS-CoV-2-CMI were excluded. CONCLUSIONS: Two-thirds of SOT recipients mounted SARS-CoV-2-CMI following vaccination with mRNA-1273. Notable discordance was observed between vaccine-induced cell-mediated and neutralizing humoral immunities. Future studies should determine whether these patients with incomplete responses are effectively protected.

10.
J Intern Med ; 291(2): 232-240, 2022 02.
Article in English | MEDLINE | ID: covidwho-1455598

ABSTRACT

BACKGROUND: Anti-SARS-CoV-2 S antibodies prevent viral replication. Critically ill COVID-19 patients show viral material in plasma, associated with a dysregulated host response. If these antibodies influence survival and viral dissemination in ICU-COVID patients is unknown. PATIENTS/METHODS: We studied the impact of anti-SARS-CoV-2 S antibodies levels on survival, viral RNA-load in plasma, and N-antigenaemia in 92 COVID-19 patients over ICU admission. RESULTS: Frequency of N-antigenaemia was >2.5-fold higher in absence of antibodies. Antibodies correlated inversely with viral RNA-load in plasma, representing a protective factor against mortality (adjusted HR [CI 95%], p): (S IgM [AUC ≥ 60]: 0.44 [0.22; 0.88], 0.020); (S IgG [AUC ≥ 237]: 0.31 [0.16; 0.61], <0.001). Viral RNA-load in plasma and N-antigenaemia predicted increased mortality: (N1-viral load [≥2.156 copies/ml]: 2.25 [1.16; 4.36], 0.016); (N-antigenaemia: 2.45 [1.27; 4.69], 0.007). CONCLUSIONS: Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. Our findings support that these antibodies contribute to prevent systemic dissemination of SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19 , COVID-19/immunology , COVID-19/mortality , Critical Illness , Humans , RNA, Viral/blood , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL